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Abstract 
 
The initial magnetic susceptibility of a two dimensional ferrofluid system has been 

calculated. Assuming a two body interaction approach, we find that the ordering temperature 
T0 depends on both of the anisotropy energy of the particles and the direction of the magnetic 
field. Our calculations illustrate the effect of the particle’s size as a sensitive parameter of 
determining the state of the assembly magnetization. 
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1. Introduction 
 

The magnetic anisotropy of a ferromagnetic fine particle is characterized by its 
magnetic easy axis. The deviation of the particle magnetization M from its easy axis direction 
(c-axis) measures the magnetic anisotropy of the particle. When a fluid of such particles is 
subject to an external magnetic field H, its magnetic state strongly depends on the nature of 
the magnetic anisotropy of the particles and on the magnitude and direction of the applied 
magnetic field. Therefore, many assumptions have been made to explore the relation between 
M and H for anisotropic magnetic fluids [1-2]. Stoner et al assumed that M is parallel to the 
c-axis if the applied magnetic field is zero [3]. When H is applied to such a system of 
ferrofluid all particles will orient themselves in the direction of H. Gruyters [4] studied the 
two dimensional layers of interacting nanoparticles with random magnetic anisotropy using 
Monte Carlo technique and found that the random magnetic anisotropy emerges as a new 
approach to the problem of exchange bias in nanoparticles systems. Franco and Conde [5] 
studied the effect of the magnetic anisotropy at temperatures above the blocking temperature 
of uniaxial nanoparticle systems, and they found an influence of anisotropy on the grain size 
distribution even for monodisperse systems. 

Studying the temperature dependence of the initial magnetic susceptibility χ for a 
magnetic fluid is a key to classify the magnetic state of the fluid. In the absence of magnetic 
anisotropy it was found that the Neel temperature increases linearly with increasing magnetic 
particle concentration in the dilute ferrofluid [6]. For a linear chain of magnetic particles a 
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ferromagnetic like state is established when H is parallel to the chain and an anti 
ferromagnetic like state exists in the perpendicular case [7-8]. Introducing the magnetic 
anisotropy of the particles showed a significant dependence of the ordering temperature on 
the anisotropy constant [4, 6-12]. In a two dimensional case, and ignoring the magnetic 
anisotropy of the particles, it was found that the ordering temperature T0 is always negative, 
regardless of the field direction [13].  

The purpose of the present work is to investigate the effect of particle anisotropy on a 
dimers magnetic fluid, in the context of the following assumptions: 

 
1. particle-particle interaction (dimer model) 
2. the field direction is taken relative to the c-axis (the easy direction) of the magnetic 

particles 
3. Maxwell-Boltzmann statistics is considered in calculating the magnetization, M, of 

the assembly from which we deduce the initial susceptibility. 
 
There are many types of magnetic anisotropy. We are concerned with two types, 

namely, the crystal anisotropy or magneto crystalline anisotropy and shape anisotropy. The 
main source to the crystal anisotropy is spin-orbit coupling. The anisotropic energy of this 
type can be expressed as, β2sinKVH a = , where K  is the uniaxial anisotropy constant, V  
is the particle volume, and β  is the angle between the direction of the magnetic moment of 
the particle and its easy axis.  

In a ferrofluid, shape anisotropy is more dominant than crystalline anisotropy, and 
shape anisotropy arises because of the shape elongation of the fine nanoparticles. In 
elongated particles the easy axes are directed along the long axes of the particles [14]. The 
shape anisotropy energy is given by 

 
 

 ....sinsin 4
2

2
1 ++= ββ KKH a                                         (1) 

 
 

Where K1 and K2 are the first and the second order anisotropy constants, respectively. Since it 
is mathematically easier to deal with spherical particles than elongated particles, so in our 
model we will consider particle-particle interaction in two dimensions, and assume all the 
particles are spheres with crystal anisotropy that has the same value as the shape anisotropy. 
Therefore, only K1 exists (we will refer to it as K).  
 

 
2. Theoretical model 
 
Let us assume that our assembly consists of N particles, and each system consists of 

two particles. To calculate the total magnetization M of the assembly we have to calculate the 

total partition function ZT which is equal to ( )
)!2(

2

N
ZZ

N

T =  , where Z is the two particle 

partition function and is equal to Γ= ∫
−

deZ kT
HT

. Here HT is the total Hamiltonian energy of 

the assembly and Γ is the volume phase space. In this assembly there are N/2 pairs of 
particles. The total Hamiltonian of the system is given by 
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aT HHHH ++= 0int ,                    (2) 

where intH  is the dipole-dipole magnetic interactions, 0H  is the magnetic interaction with 

the external magnetic field H


 and aH  is the anisotropy energy of the particle. These field 
interactions are, respectively, given by:  
 
 

53.int
).)(.(3.

r
rr

r
H

 µµµµ ′
−
′

=  

HHH
 ..0 µµ ′−−=  

β2sinKVH a =  
 
 
Where r  is the separation between the particles, µ  and µ ′  are the magnetic moments of the 
two particles with same magnitude and different directions, K  is the uniaxial anisotropy 
constant, V  is the volume of the particle, and β  is the angle between the direction of the 
magnetic moment and the easy axis. 
 Before we calculate Z let us address the assumptions we will consider to simplify the 
calculation and also give their validity. In the first assumption, we will consider the 
interaction energy between the dipoles to be very small compared with the thermal agitation 

energy ( 13

2

<<
ikTR

µ ), where iR  is the minimum distance between the particles in the system. 

Secondly, we will assume that the anisotropic energy is small compared with the thermal 

agitation energy 





 << 1

kT
KV , this is the case for a dilute system, i.e., the packing fraction,

07.0≤ε , above this critical value, one cannot ignore the effect of viscosity. Finally, the 
applied magnetic field is small. All these assumptions are valid since we are working at room 
temperature.     
 Having addressed the essential parts of our theoretical approach, we have calculated the 
total magnetization and the initial susceptibility.  
 
 

2.1  Model Calculation 
 
As for the external magnetic field, two configurations are considered. In the first case 

we consider the field H to be perpendicular to the plane and in the second case we consider H 
to be in-plane. 
 
 
CASE I: 
 
Figure (1) shows this configuration. The particles lay in the xy-plane and H is in the z-

direction. The partition function for this case is given by Γ= ∫
++−

deZ kT
HHH a )( 0int

. Referring to 
figure (1) the following expressions for the energy terms of the Hamiltonian, are given by:  
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The interaction energy Hint is:  
 

 

 
Fig. 1: System of two particles in a plane, the first particle is at the origin, and the second particle at (r,η). 

 
 
Each particle has magnetic dipole moment μ(μ’) oriented at angle θ(θ’) relative to the z-axis 
and azimuth al angle ψ(ψ’). Ê  is the easy axis oriented at angle ξ relative to the z-axis and 
azimuth al angle ϕ(ϕ’). The applied field H is parallel to the z-axis 
 
 

( )ηψψθθµ ,,,,3

2

int ′′−
= g

r
H ,                    (3) 

 
 
Where  
 
( ) ( ) θθψψθθψηψηθθηψψθθ ′−′−′−′−−′=′′ coscoscossinsin)cos()cos(sinsin3,,,,g   

 
The anisotropic energy term Ha is: 
 

),,,,,,(2 φφψψξθθ ′′′−= KVJKVH a ,                  (4) 
 

Where ββφφψψξθθ ′+=′′′ 22 coscos),,,,,,(J  
 

Finally, the magnetic energy due to the interaction with the magnetic field is equal to 
 

( )θθµ ′+−= coscos0 HH                     (5) 
 

Therefore, the total Hamiltonian can be written as 
 

          =TH ( )ηψψθθµ ,,,,3

2

′′− g
r

+ ),,,,,,(2 φφψψξθθ ′′′− KVJKV ( )θθµ ′+− coscosH   (6)  
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All symbols are defined in the caption of figure (1). 
 
Inserting HT in Z, we obtain, 
 

Γ++′+= ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
−

dJ
kT
KVg

kTrkT
HeZ
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,                (7) 

 
 

Where rdrdddddddd θθθθφφψψη ′′′′=Γ sinsin . 
 
where ir  as the minimum separation that depends on the mean diameter of the particle, D, as 
well as the surfactant layer, δ , through the relation δ2+= Dri , and 0r  as the maximum 

separation ( ) 3/1
0 4/ εDr = , where ε  is the volumetric packing fraction.  

 
 
Within the frame of assumptions mentioned above the partition function reduces to  
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The total magnetization of the system and the initial susceptibility are given by: 
 

Η∂
∂

=Μ TZkT ln
x
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where
kT

x Η
=
µ .  Therefore, 
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The last equation, after simplifying it using Taylor expansion based on the small 
values in the denominator, reduces to 

 



















+++
=⊥

ξ

µχ
2

0

2

0

2

0

1

2

cos
33

2
1

3
C
C

C
C

C
CTk

N                     (11) 

Where  
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CASE II: 
 
Figure (2) shows the configuration of this case, for which the external magnetic field is in the 
z-direction while the assembly is in the x-z plane. 
The terms in the total energy of the system can be written as 
 

( )θθµ ′+−= coscos0 HH  

( )ηψψθθµ ,,,,3

2

int ′′−
= g

r
H  

),,,,,,(2 φφψψζθθ ′′′−= KVJKVH a , 
 
where all symbols are defined in the caption of figure (2). 

The initial magnetic susceptibility can be calculated to be: 
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where C0, C1, C2 are given in equations 12-14. 
 
 

                        
 
 

Fig. 2: The applied field H is parallel to the plane. All other symbols are defined in Figure 1. 
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3. Discussion 
 
Equations 11 and 15 give the magnetic susceptibility for the two distinct 

configurations considered above.  For the perpendicular case, substituting the values of C0, C1 
and C2 in equation 11 we get the ordering temperature ⊥

0T  for the perpendicular case as: 
 
 

( ) )cos31(
3

21
3

2 2

00

2
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rrrrk
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               (16) 

 
 

 The first term of the ordering temperature depends on the interaction between the two 
dipoles and the separation between particles while the second term depends on the uniaxial 
anisotropy constant and the volume of the particle. In fact the second term was completely 
absent when the magnetic anisotropy was ignored in many theoretical works [13, 15-20]. 
Moreover, the particles separation appears as a new parameter in the ordering temperature. It 
is worth mentioning that for a random distribution of easy axes, the anisotropy has no effect 
[7,12]. 

Now, for the parallel case and after substituting the constants C0, C1 and C2 in 
equation 15, the ordering temperature ||

0T  can be written as:  
 
 

 ( ) )cos31(
3

21
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2

00

2
||
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−−
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=

k
KV

rrrrk
T

ii

                (17) 

 
 

This has the same form as the perpendicular case except with the sign of first term is 
negative and doubled. This means that the dominant term will determine the state of 
magnetization. In the case of the random distribution of the easy axes our result shows that 
the anisotropy has no effect as was found in the work obeidat et al[7]. 

For random distribution, our results show that the ordering temperature is K 
independent, since for random distribution of the easy axis, the average value of ξ2cos  is 
1/3. Therefore, the ordering temperature is negative (antiferromagnetic like behavior) when 
the applied magnetic field is perpendicular to the sample, and is positive (ferromagnetic like 
behavior) when the applied magnetic field is parallel to the sample. 

The above results have been compared with the work of Popplewell et al [6] and with 
the theoretical work of [7-8, 21], their results show a negative ordering temperature of 
magnetite, so we used the ⊥

0T  expression for comparison to be consistent with the sign. Table 
(I) shows the experimental results of the ordering temperature for different values of packing 
fraction. The mean diameter of the particle, Dv, is taken to be 7.4 nm and the surfactant layer, 
δ , is 2 nm. 
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Table 1: Comparison between experimental results of the ordering temperature versus the packing fraction of 
Fe3O4 with our model and other previous models in literature. 
  
ε  

iT0
exp (K) T0 (K) this work iiT0 (K) iiiT0 (K) ivT0 (K) 

0.01 0 6 6 6.3 6.25 
0.02 10 13.7 12 10.07 8.62 
0.03 19 20.6 19 13.2 11.37 
0.05 38 34.5 32 18.55 13.26 
0.07 48 48 45.4 23.22 15.5 
0.08 75 54.9 52 25.38  
 
i Popplewell et al, J. Appl. Phys. 64, 10 (1988) 
ii Gharaibeh et al, accepted to Jordan Journal of Physics 
iii Chantrell and Wohlfarth, J. Magn, Magn, Mater. 40, 1 (1983) 
iv Obeidat et al, J Supercond Nov Magn, 22, 805 (2009) 
 
 
  If we ignore the packing fraction of 0.01, we see that the trimer model is a good model 
for small values, and the current model is in good agreement for dilute ferrofluid 07.0≤ε  
[14]. Also we see that the model of Chantrell et al [21] is very good also for very dilute 
ferrofluid, since they consider the rotation of the magnetic moments to be in two dimensions 
as well as the dimer is constrained to move in a plane.  
 
 

4.  Conclusion 
 

 We have studied the effect of crystal anisotropy in two dimensional ferrofluid 
assembly consisting of N particles. The ordering temperature T0 was found to depend on the 
anisotropy energy of the particles for perpendicular and parallel applied field. The particles 
separation appears as a new parameter in T0. The dipole-dipole term in T0 is negative for the 
perpendicular field and is positive for the parallel field. Therefore, the magnetic state is very 
crucial to this parameter and to the anisotropy. Moreover, our model is in good agreement 
with the experimental results for dilute systems. 
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